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LETTER TO THE EDITOR

Dynamical Jahn–Teller effect, double exchange and the
isotope shift in the manganites: a toy model

S Satpathy
Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA

Received 12 June 1998

Abstract. A minimal model, consisting of a 4× 4 Hamiltonian and pertaining to a single
Mn–O–Mn bond in the manganites, is introduced and solved to elucidate the physics of the
dynamical Jahn–Teller effect on the double-exchange (DEX) interaction. The effect originates
from the coupling of the motion of the bridging oxygen atom to the Mn electrons. It is shown that
(i) the DEX interaction is considerably reduced by the dynamical Jahn–Teller effect and (ii) this
reduction depends on the oxygen mass leading to an isotope shift in the Curie temperature,
Tc ∝ Mα , with α ∼ 0.2. The isotope shift is found to depend sharply on the electron hopping
parametert . The exact results are also compared to the results obtained from both the adiabatic
and the diabatic approximations.

The conventional theory of magnetism ignores the effect of lattice motion on magnetic
interaction. While this is true for many systems, for others, coupling to the lattice degrees
of freedom can have an important effect on the magnetic interaction. The recent observation
of the isotope shift ofTc in the lanthanum manganites is an example of this [1]. Another
interesting experiment in this context is the work of Zhou and Goodenough [2] indicating that
the dynamical Jahn–Teller (JT) coupling affects the transport properties in the manganites in
a regime where the static JT distortions are even suppressed. A summary of the electron–ion
coupling effects in the manganites is given by Millis [3]. Here we introduce and solve a
simple minimal model of electron–ion coupling on a single Mn–O–Mn bond to illustrate
the effect of the dynamical JT coupling on the DEX interaction [4, 5, 6]. Being simple and
exactly solvable, the model allows us to compare the accuracy of the various approximation
methods and at the same time provides us with a pedagogical explanation of the observed
isotope shift.

The model consists of a single itinerant electron moving between two Mn atoms resulting
in a fluctuating valence of either Mn+3 or Mn+4. Being a JT ion, Mn+3 produces a static
distortion of the surrounding MnO6 octahedron as sketched in figure 1. As the electron
moves from one Mn to the other, the O6 distortion has a tendency to move along with it,
so that the motions of the electron and the oxygen octahedra become intricately coupled,
leading to a modification of the magnetic interaction and the observed isotope effect.

The minimal model that describes this physics consists of two electron orbitals on the Mn
atoms, denoted by|a〉 and|b〉, and two nuclear basis states|α〉 and|β〉, corresponding to the
oscillations of the oxygen octahedra about the two stable configurationsα andβ as shown
in figure 1. The Schr̈odinger equation for the coupled system is given byH |ψ〉 = EO|ψ〉
where the Hamiltonian is

H = He +Hn +He−n (1)
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Figure 1. Model for double exchange in the presence of Jahn–Teller coupling. The configuration
shown is |αa〉, which corresponds to electron in state|a〉 and the oxygen octahedra rattling
around the equilibrium configuration shown by the full lines. This rattling is described by the
nuclear wavefunction|α〉 taken as the ground-state wavefunction of the corresponding simple
harmonic oscillator. The state|αa〉 is not an eigenstate of the system so that coupling to other
configurations, e.g.,|αb〉, can occur, leading to a coupling between the nuclear and electronic
degrees of freedom.

andO is the overlap matrix. In our model, the Hamiltonian matrix elements are taken as

〈a|He|a〉 = 〈b|He|b〉 = ε 〈a|He|b〉 = −t
〈α|Hn|α〉 = 〈β|Hn|β〉 = ε′ 〈α|Hn|β〉 = −T
〈αa|He−n|αa〉 = 〈βb|He−n|βb〉 = ε′′
〈αb|He−n|αb〉 = 〈βa|He−n|βa〉 = 1

(2)

while the overlap matrix elements are

〈a|O|b〉 = δab 〈α|O|α〉 = 〈β|O|β〉 = 1 〈α|O|β〉 = F. (3)

The electronic part is of tight-binding form with a hopping integral between the two Mn
orbitals, which in the context of the solid comes from the overlap of the Wannier functions.
Of the above parameters, we takeε = ε′ = ε′′ = 0, which redefines the zero of the energy.
We also takeT = 0 meaning that the oxygen atoms cannot switch between configurations
α andβ without involving electronic motion. The off-diagonal matrix elements ofHe−n,
such as〈αa|He−n|βa〉 are in general small and are omitted for simplicity.

The Hamiltonian parameters are: (i) the electronic hopping integralt ≈ 0.15 eV, (ii) the
quantity1 which is the energy of the ‘wrong’ configuration of the oxygen octahedra with
respect to the electron position, and (iii) the stiffness constantK of the simple harmonic
oscillator (SHO) potential well for oxygen vibrations. From band calculations [7] and
crystal structure data [8], we estimateK ≡ mω2 ≈ 20 eV Å−2, wherem is the oxygen
mass. This is consistent with a static Jahn–Teller displacement of the oxygen atoms by
about 0.1 Å in LaMnO3. We take1 = 41JT , where1JT ≈ 0.15 eV for the manganites.
The overlapF between the two nuclear wavefunctions is the ‘Frank–Condon factor’. If for
states|α〉 and |β〉 one takes the SHO ground-state wavefunctions, the overlap is given by
F = exp(−1JT /

1
2h̄ω).

With these, the Hamiltonian and overlap matrices in the combined electronic–nuclear
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basis set,|α a〉, |α b〉, |β a〉, and |β b〉, are given by

H =


0 −t 0 −F t
−t 1 −F t 0
0 −F t 1 −t
−F t 0 −t 0

 (4)

and

O =


1 0 F 0
0 1 0 F

F 0 1 0
0 F 0 1

 . (5)

The ground-state energy for the Hamiltonian is obtained by diagonalization:

Egr = 1− [12+ 4(1− F 2)(t2+ F t(1− F t))]1/2

2(1− F 2)
. (6)

We now define the DEX interaction energy to be

JDEX = E↑↓ − E↑↑ (7)

whereE↑↑ (E↑↓) is the ground-state energy of the system for the parallel (anti-parallel)
alignment of the Mn core spins. TheE↑↑ is given by equation (6) whileE↑↓ is obtained
by putting t = 0 in the same expression, following Anderson–Hasegawa’st cos(θ/2)
dependence of the hopping parametert . Here θ is the angle between the two Mn core
spins, which are treated as classical spins with fixed orientations following earlier authors.

We consider several limits.

(i) The Anderson–Hasegawa limit. In this limit, obtained by taking1 → 0, the electron
can hop between the two Mn atoms without reference to the oxygen configurations, so
that the electronic motion becomes decoupled from the nuclear motion and one recovers
the familiar Anderson–Hasegawa resultJDEX = t .

(ii) The Kresin–Wolf ‘Diabatic’limit. In this limit, which may be obtained by putting
1 → ∞ andF 6= 0 in equation (6), the effect of the higher-energy configurations,
|αb〉 and |βa〉, are neglected, so that the state of the system is given by the linear
combination of the two lower-lying configurations:c1|αa〉 + c2|βb〉. This is equivalent
to the so-called ‘diabatic’ approximation and we do indeed recover the Kresin–Wolf
resultJDEX = F t in this case. [9]

(iii) The strong static JT distortion limit. Take limits1→∞ andF ∼ e−1→ 0. We find
that in this limitJDEX →−t2/1 in contrast to the lineart-dependence of the Anderson–
Hasegawa DEX. Furthermore, the double-exchange process is ineffective (JDEX → 0)
in this limit, as the electron becomes trapped on one of the two Mn atoms, severely
inhibiting the electron transfer process. The DEX interaction energies obtained from
equations (6) and (7) are shown in figure 2.

It is instructive to solve for the ground-state energies using the adiabatic approximation
(which we also call the Born–Oppenheimer approximation) [10]. It translates into the
following steps. (i) First solve the electronic problem (2× 2 Hamiltonian and overlap
matrices) for fixed nuclear configurationsα or β. (ii) Take the energy of the lowest-energy
electronic state which is the ‘adiabatic potential’ for the nuclear motion. (iii) Solve the
nuclear problem in the adiabatic potential (also 2× 2 Hamiltonian and overlap matrices).
The final result is given by:

Eadiabatic = (1−√12+ 4t2)/2− F t
1+ 2ABF

(8)



L504 Letter to the Editor

Figure 2. The double-exchange energy as a function of the JT coupling strength. Also shown are
the results of the ‘diabatic’ approximation, the adiabatic approximation, and the ‘one-Fermion–
one-Boson’ (1F+ 1B) model as discussed in the text. The parameters are:t = 0.15 eV and
h̄ω = 0.1 eV.

where A, B are the components of the normalized ground-state wavefunction of the
electronic Hamiltonian

He =
(

0 −t
−t 1

)
. (9)

The DEX interaction energy obtained by using the adiabatic energy, equation (8), instead of
the exact energy, equation (6), is also shown in figure 2. The ‘adiabatic’ approximation is
remarkably accurate in the present case, in essence because the higher ‘adiabatic potential
surface’ is too high in energy to make a significant contribution.

In addition to the basis states|α〉 and |β〉 corresponding to the SHO ground-state
wavefunctions about each of the two nuclear configurations, if we also retain the higher-
energy basis states in the Hamiltonian, the problem reduces to the so-called ‘one-Fermion–
one-Boson’ problem:

H = −t (c†acb + c†bca)+ h̄ωa†a + ξ(a + a†)(c†aca − c†bcb) (10)

written in terms of the creation and annihilation operators for the SHO (a†, a) corresponding
to the potential well of the O6 octahedron and those for the electron states (c

†
a, ca, c

†
b, cb).

Here ξ2 ≡ h̄ω1JT . This case is much less pedagogical, but is still exactly solvable by
numerical diagonalization. The detailed solution will be discussed elsewhere [11], however,
the results from that model are also shown in figure 2 for the sake of comparison. We find
that the energetics are not drastically altered so that the simple 4× 4 Hamiltonian model
presented here suffices.

We now turn to the isotope shift. In the La–Ca–Mn–O systems, a reduction of1Tc of
about 20 K is seen when16O is replaced by18O. The isotope exponentα decreases with
increasing ionic radius〈rA〉 of the cation site indicating a dependence ofα on the electronic
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hopping parametert . The only parameter in our Hamiltonian that depends on the oxygen
mass is the overlap integralF between the basis states|α〉 and |β〉 describing the nuclear
vibrations. The isotope substitution modifies the overlap integral thereby affectingJDEX.

We can estimate the isotope exponentα (Tc ∝ M−α), as observed by Zhaoet al [1]
from the variation ofJDEX with the oxygen mass from the relation,α = d lnTc/d lnM =
d lnJDEX/d lnM, where we have used the relationshipTc ∝ JDEX. In the diabatic
limit since JDEX = F t , the exponent is given byα = −(M/1M)(1Tc/Tc) =
−(M/1M)(1F/F), whose magnitude is too high,∼ 1.2 or so, for the Hamiltonian
parameters we have used. As shown in figure 3, the magnitude of the exponent calculated
using the exact results, equation (6), is much lower,α ∼ 0.2 for typical parameters
(t = 0.15 eV and1JT = 0.15 eV), in reasonable agreement with the experimental results
[1]. In addition, unlike the results of the diabatic approximation, the isotope exponent
sharply depends on the electronic hopping parametert . Physically, this dependence is
expected since it is the relative magnitude oft versus1JT that determines the extent of the
dynamical JT effect.

Figure 3. Dependence of the isotope exponentα on the Jahn–Teller coupling strength and
electron hopping parameter. Solid lines represent the results for the 4× 4 model Hamiltonian,
while the dashed line corresponds to the result for the ‘one-Fermion–one-Boson’ model as
discussed in the text. The zero-point energy parameter is taken to be ¯hω/2= 0.05 eV for 16O.

In conclusion, we have introduced a minimal 4× 4 Hamiltonian model that contains
the key features of the dynamical JT effect on the double-exchange interaction. The model
illustrates the drastic effect of the dynamical JT coupling on the double-exchange interaction
and provides a pedagogical description of the isotope effect.
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